容器

你必须知道的容器日志 开源日志管理方案 ELK/EFK

转载:https://www.cnblogs.com/edisonchou/p/docker_logs_study_summary_part2.html

本篇已加入《.NET Core on K8S学习实践系列文章索引》,可以点击查看更多容器化技术相关系列文章。上一篇《你必须知道的容器日志(1)》中介绍了Docker自带的logs子命令以及其Logging driver,本篇将会介绍一个流行的开源日志管理方案ELK。

一、关于ELK


1.1 ELK简介

ELK 是Elastic公司提供的一套完整的日志收集以及展示的解决方案,是三个产品的首字母缩写,分别是ElasticSearchLogstashKibana

  • Elasticsearch是实时全文搜索和分析引擎,提供搜集、分析、存储数据三大功能
  • Logstash是一个用来搜集、分析、过滤日志的工具
  • Kibana是一个基于Web的图形界面,用于搜索、分析和可视化存储在 Elasticsearch指标中的日志数据 

1.2 ELK日志处理流程

上图展示了在Docker环境下,一个典型的ELK方案下的日志收集处理流程:

  • Logstash从各个Docker容器中提取日志信息
  • Logstash将日志转发到ElasticSearch进行索引和保存
  • Kibana负责分析和可视化日志信息

由于Logstash在数据收集上并不出色,而且作为Agent,其性能并不达标。基于此,Elastic发布了beats系列轻量级采集组件。

这里我们要实践的Beat组件是Filebeat,Filebeat是构建于beats之上的,应用于日志收集场景的实现,用来替代 Logstash Forwarder 的下一代 Logstash 收集器,是为了更快速稳定轻量低耗地进行收集工作,它可以很方便地与 Logstash 还有直接与 Elasticsearch 进行对接。

本次实验直接使用Filebeat作为Agent,它会收集我们在第一篇《Docker logs & logging driver》中介绍的json-file的log文件中的记录变动,并直接将日志发给ElasticSearch进行索引和保存,其处理流程变为下图,你也可以认为它可以称作 EFK。

二、ELK套件的安装


本次实验我们采用Docker方式部署一个最小规模的ELK运行环境,当然,实际环境中我们或许需要考虑高可用和负载均衡。

首先拉取一下sebp/elk这个集成镜像,这里选择的tag版本是640(最新版本已经是7XX了):

docker pull sebp/elk:640

注:由于其包含了整个ELK方案,所以需要耐心等待一会。

通过以下命令使用sebp/elk这个集成镜像启动运行ELK:

docker run -it -d --name elk \
    -p 5601:5601 \
    -p 9200:9200 \
    -p 5044:5044 \
    sebp/elk:640

运行完成之后就可以先访问一下 http://[Your-HostIP]:5601 看看Kibana的效果:  

Kibana管理界面
Kibana Index Patterns界面

当然,目前没有任何可以显示的ES的索引和数据,再访问一下http://[Your-HostIP]:9200 看看ElasticSearch的API接口是否可用:

ElasticSearch API

Note:如果启动过程中发现一些错误,导致ELK容器无法启动,可以参考《Docker启动ElasticSearch报错》及《ElasticSearch启动常见错误》一文。如果你的主机内存低于4G,建议增加配置设置ES内存使用大小,以免启动不了。例如下面增加的配置,限制ES内存使用最大为1G:

docker run -it -d --name elk \
    -p 5601:5601 \
    -p 9200:9200 \
    -p 5044:5044 \   -e ES_MIN_MEM=512m \
    -e ES_MAX_MEM=1024m \
    sebp/elk:640

三、Filebeat配置


3.1 安装Filebeat

这里我们通过rpm的方式下载Filebeat,注意这里下载和我们ELK对应的版本(ELK是6.4.0,这里也是下载6.4.0,避免出现错误):

wget https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-6.4.0-x86_64.rpm
rpm -ivh filebeat-6.4.0-x86_64.rpm

3.2 配置Filebeat

这里我们需要告诉Filebeat要监控哪些日志文件 及 将日志发送到哪里去,因此我们需要修改一下Filebeat的配置:

cd /etc/filebeat
vim filebeat.yml

要修改的内容为:

(1)监控哪些日志?

filebeat.inputs:

# Each - is an input. Most options can be set at the input level, so
# you can use different inputs for various configurations.
# Below are the input specific configurations.

- type: log

  # Change to true to enable this input configuration.
  enabled: true

  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - /var/lib/docker/containers/*/*.log
    - /var/log/syslog

这里指定paths:/var/lib/docker/containers//.log,另外需要注意的是将 enabled 设为 true。

(2)将日志发到哪里?

#-------------------------- Elasticsearch output ------------------------------
output.elasticsearch:
  # Array of hosts to connect to.
  hosts: ["192.168.16.190:9200"]

  # Optional protocol and basic auth credentials.
  #protocol: "https"
  #username: "elastic"
  #password: "changeme"

这里指定直接发送到ElasticSearch,配置一下ES的接口地址即可。

Note:如果要发到Logstash,请使用后面这段配置,将其取消注释进行相关配置即可:

#----------------------------- Logstash output --------------------------------
#output.logstash:
  # The Logstash hosts
  #hosts: ["localhost:5044"]

  # Optional SSL. By default is off.
  # List of root certificates for HTTPS server verifications
  #ssl.certificate_authorities: ["/etc/pki/root/ca.pem"]

  # Certificate for SSL client authentication
  #ssl.certificate: "/etc/pki/client/cert.pem"

  # Client Certificate Key
  #ssl.key: "/etc/pki/client/cert.key"

3.3 启动Filebeat

由于Filebeat在安装时已经注册为systemd的服务,所以只需要直接启动即可:

systemctl start filebeat.service

检查Filebeat启动状态:

systemctl status filebeat.service

3.4 验证Filebeat

通过访问ElasticSearch API可以发现以下变化:ES建立了以filebeat-开头的索引,我们还能够看到其来源及具体的message。

四、Kibana配置


接下来我们就要告诉Kibana,要查询和分析ElasticSearch中的哪些日志,因此需要配置一个Index Pattern。从Filebeat中我们知道Index是filebeat-timestamp这种格式,因此这里我们定义Index Pattern为 filebeat-*

点击Next Step,这里我们选择Time Filter field name为@timestamp:

单击Create index pattern按钮,即可完成配置。

这时我们单击Kibana左侧的Discover菜单,即可看到容器的日志信息啦:

仔细看看细节,我们关注一下message字段:

可以看到,我们重点要关注的是message,因此我们也可以筛选一下只看这个字段的信息:

此外,Kibana还提供了搜索关键词的日志功能,例如这里我关注一下日志中包含unhandled exception(未处理异常)的日志信息:

这里只是朴素的展示了导入ELK的日志信息,实际上ELK还有很多很丰富的玩法,例如分析聚合、炫酷Dashboard等等。笔者在这里也是初步使用,就介绍到这里啦。

五、Fluentd引入


5.1 关于Fluentd

前面我们采用的是Filebeat收集Docker的日志信息,基于Docker默认的json-file这个logging driver,这里我们改用Fluentd这个开源项目来替换json-file收集容器的日志。

Fluentd是一个开源的数据收集器,专为处理数据流设计,使用JSON作为数据格式。它采用了插件式的架构,具有高可扩展性高可用性,同时还实现了高可靠的信息转发。Fluentd也是云原生基金会 (CNCF) 的成员项目之一,遵循Apache 2 License协议,其github地址为:https://github.com/fluent/fluentd/。Fluentd与Logstash相比,比占用内存更少、社区更活跃,两者的对比可以参考这篇文章《Fluentd vs Logstash》。

因此,整个日志收集与处理流程变为下图,我们用 Filebeat 将 Fluentd 收集到的日志转发给 Elasticsearch。

当然,我们也可以使用Fluentd的插件(fluent-plugin-elasticsearch)直接将日志发送给 Elasticsearch,可以根据自己的需要替换掉Filebeat,从而形成Fluentd => ElasticSearch => Kibana 的架构,也称作EFK。

5.2 运行Fluentd

这里我们通过容器来运行一个Fluentd采集器:

docker run -d -p 24224:24224 -p 24224:24224/udp -v /edc/fluentd/log:/fluentd/log fluent/fluentd

默认Fluentd会使用24224端口,其日志会收集在我们映射的路径下。

此外,我们还需要修改Filebeat的配置文件,将/edc/fluentd/log加入监控目录下:

#=========================== Filebeat inputs =============================

filebeat.inputs:

# Each - is an input. Most options can be set at the input level, so
# you can use different inputs for various configurations.
# Below are the input specific configurations.

- type: log

  # Change to true to enable this input configuration.
  enabled: true

  # Paths that should be crawled and fetched. Glob based paths.
  paths:
    - /edc/fluentd/log/*.log

添加监控配置之后,需要重新restart一下filebeat:

systemctl restart filebeat

5.3 运行测试容器

为了验证效果,这里我们Run两个容器,并分别制定其log-dirver为fluentd:

docker run -d \
           --log-driver=fluentd \
           --log-opt fluentd-address=localhost:24224 \
           --log-opt tag="test-docker-A" \
           busybox sh -c 'while true; do echo "This is a log message from container A"; sleep 10; done;'

docker run -d \
           --log-driver=fluentd \
           --log-opt fluentd-address=localhost:24224 \
           --log-opt tag="test-docker-B" \
           busybox sh -c 'while true; do echo "This is a log message from container B"; sleep 10; done;'

这里通过指定容器的log-driver,以及为每个容器设立了tag,方便我们后面验证查看日志。

5.4 验证EFK效果

这时再次进入Kibana中查看日志信息,便可以通过刚刚设置的tag信息筛选到刚刚添加的容器的日志信息了:

六、小结


本文从ELK的基本组成入手,介绍了ELK的基本处理流程,以及从0开始搭建了一个ELK环境,演示了基于Filebeat收集容器日志信息的案例。然后,通过引入Fluentd这个开源数据收集器,演示了如何基于EFK的日志收集案例。当然,ELK/EFK有很多的知识点,笔者也还只是初步使用,希望未来能够分享更多的实践总结。